
CHAPTER

TEN

COMMUNICATING SEQUENTIAL PROCESSES

C.A.R. Hoare's Communicating Sequential Processes (CSP) is a model-language

hybrid for describing concurrent and distributed computation. A CSP program is

a static set of explicit processes. Pairs of processes communicate by naming each

other in input and output statements. Communication is synchronous with uni-

directional information
ow. A process that executes a communication primitive

(input or output) blocks until the process with which it is trying to communicate

executes the corresponding primitive. Guarded commands are used to introduce

indeterminacy.

CSP is a language fragment; it extends an imperative kernel with guarded

and parallel commands. Hoare's primary concerns in the design of CSP have been

with issues of program correctness and operating systems description. CSP shows

its strong operating systems orientation by prohibiting dynamic process creation,

determining the interprocess communication structure at system creation, and

excluding recursion.

CSP has inspired both development and response. For example, there have

been proposals for a formal semantics of CSP ([Apt 80; Levin 81]), published

critiques of the CSP [Kieburtz 79], and suggestions for extensions to the language

[Bernstein 80].

130

communicating sequential processes 131

Process A Process B

� �

� �

� y := 5;

B ? x; - - A waits for B �

� �

- - the reception occurs A ! y + 1; - - send to A

- - x is now 6 �

� �

- - now we send back to B �

B ! 2*x; - - A waits for B �

� �

- - the reception occurs A ? y; - - receive from A

� - - y is now 12

� �

Figure 10-1 The sequencing of communication.

Communications and Processes

Metaphorically, processes in CSP communicate by pretending to do ordinary in-

put and output. More speci�cally, two processes communicate by naming each

other in input and output statements. A process writing output speci�es an

expression whose value is to be sent; one reading input names a variable to re-

ceive that value. The parallel to writing and reading in conventional languages

(perhaps with the reading and writing directed to particular devices) is straight-

forward. Information
ow in communication is unidirectional, from the output

process to the input process. Input and output commands that name each other

are said to correspond.

To illustrate, imagine that we have two processes, A and B. A wishes to

receive a value from B and to place it in variable x. A therefore executes the

command B ? x (\input a value from B and store it in x"). B wishes to output

the value of an expression exp to A, so it executes A ! exp (\output the value of

exp to process A"). Communication occurs after both processes have issued their

commands. Execution of either B ? x or A ! exp blocks the executing process

until the other process executes the corresponding command. Figure 10-1 shows

�rst a transfer from B to A, and then a transfer back from A to B.
Like many other systems, CSP has both parties to a communication partici-

pate in arranging the communication. Unlike the other systems we discuss, CSP

requires both parties to speci�cally identify each other. In our other systems,

either an anonymous requester calls a named server or anonymous processes

communicate through a shared port. CSP is the only system we study that

precludes any anonymity in communication.*

* Hoare recognizes that this makes it di�cult to build subroutine libraries. He suggests

extending CSP with a \macroizing" name substitution system to allow libraries of processes.

132 models

Of course, computation requires more than just communication. Hoare pro-

vides statements that correspond to the commands of conventional imperative

languages. These constructs have a few extensions to adapt CSP for indetermi-

nate multiprocessing.

In addition to the communication primitives ? (input) and ! (output), CSP

has variable declarations, assignment statements, sequencing, concurrent exe-

cution, repetition, and conditionals. Despite this variety of constructs, Hoare

describes only enough of the language to discuss the communication and concur-

rency aspects of CSP. The published CSP is a language fragment. Broadening

CSP to a full programming language would require signi�cant extension, partic-

ularly with respect to data structures.

CSP has its own variations on conventional syntax. CSP joins sequential

statements with semicolons and delimits block structure by square brackets ([]).
Variables can be declared anywhere in a program. Their scope extends to the

end of the statement sequence containing their declaration. Thus, the CSP code

C:: n : integer;
n := 1729;
D ! 2*n;
n := 3

declares process C, gives it an integer n, assigns to n the value 1729, and at-

tempts to send to process D the value of twice n. If D executes a corresponding

input statement (one of the form C ? k for its variable k), the output statement

terminates, and the program assigns the value 3 to n. Immediately after the

communication, the value of k in D is 3458.

CSP provides both primitive and structured (record) data types. Structured

types are indicated by an optional structure name and the sub�elds of the struc-

ture (enclosed in parentheses and joined by commas). The composition of a

structured data type is to be inferred from its usage.

Assignment and communication require matching structures|by and large,

that the structures' �eld names match. Thus, structures can be used like entry

names to control communication patterns. Figure 10-2 gives several examples of

matching structures in CSP.

Failure is an important concept in CSP. CSP uses failure both to control

internal process execution and to communicate process termination. A process

that reaches the end of its program terminates. An input statement that tries

to read from a terminated process fails. Similarly, an output statement that

tries to write to a terminated process fails. Conditional statements (guarded

commands) treat failure as equivalent to false. In other contexts, a failure causes

the executing process to terminate.

CSP indicates simple iteration by the form

*[<test> ! <action>]

communicating sequential processes 133

Form E�ect

n := 3*n + 1 Ordinary variable assignment.

x := subscription (name, address) Constructs a structured record of type subscrip-

tion, of two �elds: the �rst, the value of name,

the second, the value of address.

subscription(name, address) := x If x is a structured value of the form subscrip-

tion(i,j), then name := i and address := j. Oth-

erwise, this statement is illegal; it \fails."

semaphore := P() A structured record with no �elds. Hoare calls

such a record a signal.

(new, old) := (new+old, new) An unlabeled structure assignment. Simultane-

ously, new := new + old and old := new.

Figure 10-2 CSP record structures.

This statement is equivalent to \while test do action."

CSP processes compute in parallel. Each process has a label (name), denoted

by a�xing the name to the process program with a double colon (::). Processes
joined by the parallel operator (k) compute concurrently. Concurrent processes

must not share target (input and output) variables.

Fibonacci numbers We illustrate these operations with a simple triple of pipe-

lined processes (Figure 10-3). The �rst process, Fibon, computes successive Fi-

bonacci numbers. The second process, Mult, receives these numbers from Fibon.
Mult squares and cubes them and passes the results (as a structured record) to

process Print. Print communicates with the external environment, which can pre-

sumably �nd something useful to do with the powers of the Fibonacci numbers.

[Fibon:: old, new: integer;

old := 0;

new := 1;

*[true ! Mult ! new;

(new, old) := (new + old, new)] k

Mult:: val: integer;

*[Fibon ? val !

Print ! �brec(val, val*val, val*val*val)] k

Print:: f, f2, f3: integer;

*[Mult ? �brec(f, f2, f3) !

environment ! printrec(f, f2, f3)]]

134 models

Figure 10-3 The Fibonacci pipeline.

Guarded commands and indeterminacy The ! construct of the iterative

statement is part of a guarded clause, like the guarded commands discussed in

Section 2-2. More speci�cally, in CSP, a guarded clause is a conditional statement.

The condition of the clause is the series of boolean expressions before the !.

If all these expressions evaluate to true, then the process executes the action

of the guarded command (the series of statements after the !). Both boolean

conditions and action statements are joined by semicolons.

Alternative commands are built by concatenating guarded statements

with []s, and enclosing the result in square brackets ([]). An alternative com-

mand is thus a kind of guarded command. To execute an alternative command,

the system �nds a guard clause whose condition is true (all the boolean ex-

pressions in the condition are true), and evaluates the actions of that clause. It

ignores the other clauses. Since CSP lacks user-de�ned functions, the evaluation

of guard conditions cannot cause any (discernible) side e�ects.

The above describes just another syntax for guarded commands. CSP in-

troduces an important extension by allowing the last boolean expression in a

guard clause condition to be an input statement. This statement is treated as

true when the corresponding output statement has already been executed. When

combined with the alternative command, this guarded input command permits a

program (reading input) to select the next available partner for communication.

Thus, a process that executes the command

[X ? k ! Sx
[]

Y ? k ! Sy
[]

Z ? k ! Sz]

reads into variable k from whichever one of processes X, Y, or Z is waiting to

communicate with it. If more than one process is ready to communicate, the sys-

tem selects one arbitrarily. If no process is waiting, the process that executes this

command blocks until one of X, Y, or Z tries to communicate. The process then

executes the command list (Sx, Sy, or Sz) associated with the successful com-

munication. Combining the alternative command with the repetitive operator *

yields the iterative command. This command repeatedly executes the alternative

command. On each repetition, the action of a guard clause with a true guard

is executed. When all guards fail, the iterative command terminates. Thus, the

process

communicating sequential processes 135

Merge:: c: character;
*[X ? c ! Sink ! c
[]

Y ? c ! Sink ! c
[]

Z ? c ! Sink ! c

receives characters from processes X, Y, and Z and forwards them to process

Sink. It repeats this forwarding until X, Y, and Z have terminated.* Although

input commands may be included in guard conditions, Hoare speci�cally ex-

cludes output commands in guarded conditions (output guards). We discuss the

rami�cations of this decision later in this chapter.

One can declare an array of processes that execute the same program in

parallel. These processes di�er only by their array indices. For example, the

command

transfer (source: 1..limit)::
val, dest: integer;
*[origin(source) ? message(dest,val) ! destination(dest) ! val]

declares limit processes of type transfer. The sourceth transfer process accepts

from the sourceth origin process a message, pair consisting of an address (dest)
and a value (val). It forwards that value to the destth destination process. Each

transfer process continues this forwarding until its origin process terminates.

Process subscripting can be thought of as a macro operator that generates

multiple copies of the text of the process body. In a declaration of process arrays,

the size of the array must be a \compile-time" constant. That is, the system

must be able to compute the number of processes to create before the program

begins executing.yAlthough the examples only show instances of one-dimensional

process arrays, we can declare arrays of parallel processes of arbitrarily many

dimensions. In a parallel statement, a reference to process(k: lower..upper) is

a request for (upper�lower+1) copies of the text of process, with each of the

values from lower to upper substituted for k in one copy of the body of process. A
reference to process(k: lower..upper) in an input guard of an alternative command

expresses willingness to receive input from any of these processes. Thus, while

communication channels in CSP are intended to be somewhat rigid, we can

achieve an arbitrary communication structure by evaluating process indices.

To a large extent, processes take the place of procedures in CSP. Unlike

many modern programming languages, CSP processes are not recursive|that

is, a process cannot communicate with itself. Clearly, since both parties to a

* This example may remind the reader of the indeterminate-merge of Data Flow (Chapter 9).
y Hoare recognizes that it is just a small step from a bounded array to one that is seman-

tically unbounded (like the stack of Algol or Pascal). An unbounded array could be used to

provide CSP with dynamic process creation. However, Hoare chose not to take that step.

136 models

communication in CSP must act for the communication to take place, an attempt

at self-communication would deadlock. To get the e�ect of processes as recursive

procedures, we can create a stack (array) of processes and allocate a new process

from the stack for each recursive level.

Bounded producer-consumer bu�er In this section we present a CSP pro-

gram for a bounded producer-consumer bu�er. This bu�er is bufsize elements

large. It serves numbcons consumers and numbprod producers. This example il-

lustrates a single process that communicates with an array of other processes.

The lack of output guards in CSP complicates the program.

[Bu�er::
buf (0 .. bufsize-1) : bu�er-element;
�rst, last : integer; - - queue pointers

j, k : integer; - - process counters

�rst := 0;
last := 0;
*[(j: 1..numbprod) - - For each of the numbprod

producers,

(last+1) mod bufsize =/ �rst; - - if there is room in the bu�er,

Producer(j) ? buf(last) ! - - read an element.

last := (last + 1) mod bufsize
[]

(k: 1..numbcons) - - For each of the numbcons

consumers,

�rst =/ last; - - if there is something in the

bu�er

Consumer(k) ? more() ! - - and a consumer signals a

desire to consume,

Consumer(k) ! buf(�rst); - - send that consumer an

element.

�rst := (�rst + 1) mod bufsize]
- - The bu�er runs concurrently with the producers and consumers.

PRODUCER is the text of the producer processes; CONSUMER, of the

consumer processes.

k (i: 1..numbprod) PRODUCER
k (i: 1..numbcons) CONSUMER]

The repetition of the loop drives the bu�er. The subscripted range implies

that this command alternates over the numbprod producers and the numbcons
consumers. This bu�er can receive input from any producer if there is room in

its bu�er. In response to a signal of the structured form more(), the bu�er sends
the next bu�er element to the kth consumer. This signal would be unnecessary

if CSP had output guards. With output guards, the bu�er could merely have

communicating sequential processes 137

an output guard alternating with an input guard. Without them, the program

requires an extra communication step.

Dining philosophers This solution to the dining philosophers problem in CSP

is adapted from Hoare [Hoare 78]. There are three varieties of processes: philoso-

phers (Phil), forks (Fork), and the room (Room). Philosophers think, request

permission to enter the room, ask �rst for their left fork and then for their

right, eat, drop their forks, and exit. They repeat this sequence interminably.

The communications between the philosophers, forks, and room is done purely

through labeled synchronization; the input and output commands do not trans-

fer any information. The correct order of communication patterns is maintained

because record-structured communication succeeds only when the record struc-

tures match. Here we use the \macro" operator � to associate an identi�er with

program text.

PHIL �
*[true !

THINK;
room ! enter (); - - try to enter the room

fork(i) ! pickup (); - - try to pick up left fork

fork((i + 1) mod 5) ! pickup (); - - try to pick up right fork

EAT;
fork (i) ! putdown(); - - drop the left fork

fork ((i + 1) mod 5) ! putdown(); - - drop the right fork

room ! exit()] - - leave the room.

The program for a fork is

FORK �
*[phil(i) ? pickup() !

phil(i) ? putdown()
[]

phil((i � 1) mod 5) ? pickup() !
phil((i � 1) mod 5) ? putdown()]

That is, the ith fork can be picked up by either the ith or the (i�1)th philosopher

(modulo 5). Then, only that philosopher can put it down.

Somewhat like a �re marshal, the ROOM is concerned with keeping the oc-

cupancy of the dining hall at �ve or fewer. It does this by counting the occupants

and refusing requests when four philosophers are already at the table. We enforce

this constraint by using a boolean condition in the guarded command.

ROOM �

occupancy: integer;

138 models

occupancy := 0;
*[(i: 0..4) occupancy < 4; phil(i) ? enter() !

occupancy := occupancy + 1
[]

(i: 0..4) phil(i) ? exit() !
occupancy := occupancy � 1

]

These elements are set running concurrently with the statement

[room:: ROOM k fork(i:0..4):: FORK k phil(i:0..4):: PHIL]

Since only four philosophers can be in the room at any time, the program cannot

deadlock with �ve single-forked, hungry sophists. On the other hand, the program

does not solve the harder problem of precluding starvation|that is, ensuring

that every philosopher eventually gets to eat.

Sorting tree Guarded input commands allow input from a variety of di�erent

process types. It would seem that output commands, though able to index their

destination, would be limited to performing output to only a single kind of

process. Our �nal example shows that restrictions on communication to a single

kind of communicator can be overcome by a su�ciently ill-structured program.

We recognize that several di�erent process types can be encoded as a single

type. Here the index of the process serves as a \big switch," directing processes

to the appropriate section of code. Thus, some of the intended limitations on

output activity in CSP can be evaded, though at the cost of producing a clumsy

program.

We illustrate this idea with a program for sorting. We imagine a binary

sorting tree, as in Figure 10-4, which performs a variant of the merge phase

of Heapsort [Williams 64]. We use the terms \leaf," \parent," and \child" to

describe the relationships of the nodes of the tree. Each of the leaf-level processors

is given a number, which it passes to its parent. Each process in the middle of

the tree successively reads values from its left and right children, compares these

values, passes the larger to its parent, and obtains the next value from the child

that gave it the larger value. When a child terminates (runs out of values), its

parent transfers the remaining values from its other child until that source is

also exhausted. The parent node then terminates, a condition discovered by the

grandparent when it next tries to receive input.

In this example, we are sorting 16 items in a 31-node tree; the program

naturally generalizes to sorting larger sets of numbers. The program has two

kinds of processes. The source process receives 16 elements from the environ-

ment and feeds them to the leaves of the sorting tree. The element processes
are the nodes of the tree, including a \sink" process that collects the values (in

order, of course) from the root of the tree and sends them back to the environ-

ment. There are three classes of element processes: leaf processes, intermediate

communicating sequential processes 139

Figure 10-4 The sorting tree.

comparator processes, and the sink. The leaf processes just transmit their value

and terminate. The comparator processes receive streams of values from their

left and right children, merge them in order, and transmit the values to their

parents. The sink passes the values back to the environment. Let us number the

nodes in the tree as illustrated, with the root node as 1, the other comparator

nodes as nodes 2 through 15, the leaf nodes as 16 through 31, and the sink node
as 0.

The program for a source is the CSP version of a for loop.

140 models

SOURCE �
i, val: integer;
i := 16;
*[i < 32;

environment ? val !
element(i) ! val;
i:= i + 1

]

An element's program is more complex. An element recognizes its own class

(leaf, comparator, or sink) by referring to its index. The top level of an element
is thus a three-way branch.

ELEMENT �
[i > 15 ! - - Leaves transfer and terminate.

val: integer;
source ? val;
element(i div 2) ! val

[]

i = 0 ! - - The sink node gets values from the root and transfers

them to the environment.

*[val: integer;
element(1) ? val ! environment!val]

[]

i > 0; i � 15; ! COMPARATOR]

A comparator uses two integer variables, ValLeft (the value from the left child)

and ValRight, and two boolean variables, NeedLeft (a value needed from the left

child) and NeedRight. NeedLeft and NeedRight are true when a value needs to be

\pulled" from that child; when they are both false, a comparison is possible. The

result of this comparison is sent to the parent node. The comparator program
is thus a two-part procedure; while both children are active, values are merged.

After either child has terminated, it pulls the remaining values from the other

child and forwards them to its parent. In this scheme, the children of element i

are 2i and 2i+ 1; the parent of i is i div 2.

COMPARATOR �
NeedLeft, NeedRight : boolean;
ValLeft, ValRight : integer;
NeedLeft := true;
NeedRight := true;

- - If a value is needed from a side, obtain it. Otherwise, compare the two

values in hand and pass the larger to the parent. Continue until one

child process has terminated and a value is needed from that process.

communicating sequential processes 141

*[NeedLeft; element(2*i) ? ValLeft ! NeedLeft := false
[]

NeedRight; element(2*i + 1) ? ValRight ! NeedRight := false
[]

(not NeedLeft) and (not NeedRight) !
[ValLeft > ValRight !
NeedLeft := true;
element(i div 2) ! ValLeft

[]

ValRight � ValLeft !
NeedRight := true;
element(i div 2) ! ValRight

]
];

- - Exhaust the remaining values from the child that has not terminated.

Transfer these values to the parent node.

[not NeedLeft ! element(i div 2) ! ValLeft;
*[element(2*i) ? ValLeft ! element(i div 2) ! ValLeft]

[]

not NeedRight ! element(i div 2) ! ValRight;
*[element(2*i + 1) ? ValRight ! element(i div 2) ! ValLeft]

]

The main program is

[source:: SOURCE k (i: 0..31) element:: ELEMENT k environment]

Figure 10-5 shows the state of the sorting tree partway through the sorting

process.

Perspective

CSP is directed primarily at issues of operating systems implementations and

program correctness. Many researchers have used CSP as a basis for describing

concurrent programming semantics. For example, Apt, Francez, and de Roever

[Apt 80] and Levin and Gries [Levin 81] have studied axiomatic proofs of the

correctness of CSP programs; Francez, Lehmann, and Pnueli [Francez 80] have

described the denotational semantics of CSP.

Communication in CSP is synchronous. Both parties to an exchange must be

ready to communicate before any information transfer occurs. CSP does not have

mechanisms for message bu�ering, message queueing, or aborting incomplete

communications. It lacks these features because Hoare believes that they are not

142 models

Figure 10-5 The sorting tree while sorting.

primitive|that facilities such as bu�ering should be provided by higher-level

software.

Kieburtz and Silberschatz [Kieburtz 79] dispute this point. They argue that

unbu�ered communication over memoryless channels is itself an assumption

about the nature of computer hardware. This assumption re
ects certain im-

plementations in the current technology (such as Ethernet systems). However,

not all future hardware will necessarily share this property.

communicating sequential processes 143

CSP attempts to describe primitives for communication. Naturally, the lan-

guage is pragmatically weak. If a user wants message bu�ering, then the user

must write the code for that bu�ering. Some of the other restrictions in CSP are

also unpragmatic. The CSP calling sequence precludes recursion, although its ef-

fect can be obtained (as Hoare suggests) by programs that use stacks of processes.

Limiting interprocess communication structure to those indexed names that can

be determined at compilation does not limit the possible varieties of interprocess

connections, but (as the sorting tree example shows) only serves to disorganize

those programs that require a more complex communication structure. The lack

of output guards forces the user to program unnecessary communications in those

situations where the action of an output guard is really needed (as the bu�er

example illustrates.)

Hoare presumably excludes output guards because they complicate the

process of matching communicators. Even in his original description of CSP

([Hoare 78]), he recognizes their expressive merits. Kieburtz and Silberschatz

[Kieburtz 79] show that CSP, even without output guards, requires a nontrivial

interprocess communication protocol. Many now treat output guards as if they

were primitive.

Silberschatz [Silberschatz 79] shows that by imposing a strict order among

each pair of communication processes, a restricted form of input and output

guards can be e�ectively implemented. In particular, for each communicating

pair, one process must be declared the \server" and the other the \user." A

server process can have both input and output guards with its users. This scheme

is appropriate for systems that are hierarchically organized. However, like the

original \no output guards" proposal, it su�ers from a lack of symmetry between

processes.

Bernstein [Bernstein 80] shows that if each process has a static priority,

then output guards can be implemented without restrictions. This priority is

used only to determine what a process should do if it has sent a request for

communication to one process and receives a request for communication from an-

other. Bernstein's implementation does not bound the number of communication

requests a process must send before establishing communication. Furthermore,

it is possible for two processes to try to communicate inde�nitely and never

succeed (livelock). To resolve these implementation problems, Buckley and Sil-

berschatz [Buckley 83] propose an implementation which guarantees that two

processes attempting to communicate will do so using a bounded number of

messages.

PROBLEMS

10-1 Rewrite the program for the producer-consumer bu�er using output guards.

10-2 Program the process control bath example of Chapter 7 in CSP.

144 models

10-3 Show how recursion can be simulated in CSP with an array of processes.

10-4 Contrast CSP with Concurrent Processes (Chapter 8).

10-5 To what extent can CSP be used to model hardware?

REFERENCES

[Apt 80] Apt, K. R., N. Francez, and W. P. de Roever, \A Proof System for Communicat-

ing Sequential Processes," ACM Trans. Program. Lang. Syst., vol. 2, no. 3 (July 1980),

pp. 359{385. Apt et al. propose an axiomatic proof system for correctness proofs of CSP

programs. One of many papers on the formal semantics of CSP.

[Bernstein 80] Bernstein, A. J., \Output Guards and Nondeterminism in `Communicating

Sequential Processes,' " ACM Trans. Program. Lang. Syst., vol. 2, no. 2 (April 1980),

pp. 234{238. Bernstein shows how static process priorities can be used to implement

output guards.

[Buckley 83] Buckley, G., and A. Silberschatz, \An E�ective Implementation for the Gener-

alized Input-Output Construct of CSP," ACM Trans. Program. Lang. Syst., vol. 5, no. 2

(April 1983), pp. 223{235. Buckley and Silberschatz present an improved priority scheme

for implementing output guards.

[Francez 80] Francez, N., D. J. Lehmann, and A. Pnueli, \A Linear History Semantics for

Distributed Languages," 21st Annu. Symp. Found. Comput. Sci., Syracuse, New York

(October 1980), pp. 143{151. This paper presents a denotational semantics for CSP.

[Hoare 78] Hoare, C.A.R., \Communicating Sequential Processes," CACM, vol. 21, no. 8

(August 1978), pp. 666{677. This is the original CSP paper. To illustrate the expressive

power of CSP, Hoare presents the solutions to several \standard problems" of concurrency

control, such as a bounded bu�er, the dining philosophers, semaphores, and the sieve of

Eratosthenes.

[Kieburtz 79] Kieburtz, R. B., and A. Silberschatz, \Comments on `Communicating Se-

quential Processes,' " ACM Trans. Program. Lang. Syst., vol. 1, no. 2 (January 1979),

pp. 218{225. This paper discusses some of the limitations of CSP.

[Levin 81] Levin, G. M., and D. Gries, \A Proof Technique for Communicating Sequential

Processes," Acta Informa., vol. 15, no. 3 (June 1981), pp. 281{302. Levin and Gries

present proof rules for the total correctness of CSP programs. They treat output guards

as primitive.

[Reynolds 65] Reynolds, J. C., \COGENT," Report ANL-7022, Argonne National Labora-

tory, Argonne, Illinois (1965). COGENT is the source of the CSP-style of structured data

type.

[Silberschatz 79] Silberschatz, A., \Communication and Synchronization in Distributed

Systems," IEEE Trans. Softw. Eng., vol. 5, no. 6 (November 1979), pp. 542{547. Silber-

schatz shows that segregating sets of input and output processes allows a restricted form

of output guards for CSP.

[Williams 64] Williams J.W.J., \Algorithm 232 Heapsort," CACM, vol. 7, no. 6 (June 1964),

pp. 347{348. This paper presents the original de�nition of Heapsort. The sorting tree

example resembles Heapsort's merge phase.

